Response of Archaeal Communities in the Rhizosphere of Maize and Soybean to Elevated Atmospheric CO2 Concentrations

نویسندگان

  • David M. Nelson
  • Isaac K. O. Cann
  • Roderick I. Mackie
چکیده

BACKGROUND Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO(2)]) will influence the structure and function of soil archaeal communities. METHODOLOGY/PRINCIPAL FINDINGS We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (∼385 ppm) and elevated (550 ppm) [CO(2)] in a replicated and field-based study. There was no influence of elevated [CO(2)] on copy numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C(4) plant. Phylogenetic evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model leguminous-C(3) plant, at elevated [CO(2)], whereas quantitative PCR data indicated no changes in the absolute abundance of archaea. There were no changes in potential ammonia oxidation rates at elevated [CO(2)] for soybean. Ammonia oxidation rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea. KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO(2)] for soybean. CONCLUSION Plant-driven shifts in soil biogeochemical processes in response to elevated [CO(2)] affected archaeal community composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO(2)] in the absence of drought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of climate change on water use efficiency in rain-fed plants

Water use efficiency (WUE) reflects the coupling of the carbon and water cycles and is an effective integral trait for assessing the responses of vegetated ecosystems to climate change. In this study, field experiments were performed to examine leaf WUE (WUEleaf) in response to changes in CO2 concentration and other environmental variables, including soil moisture and air temperature. We al...

متن کامل

Methanogenic Community Was Stable in Two Contrasting Freshwater Marshes Exposed to Elevated Atmospheric CO2

The effects of elevated atmospheric CO2 concentration on soil microbial communities have been previously recorded. However, limited information is available regarding the response of methanogenic communities to elevated CO2 in freshwater marshes. Using high-throughput sequencing and real-time quantitative PCR, we compared the abundance and community structure of methanogens in different compart...

متن کامل

Influence of Elevated Atmospheric Carbon Dioxide on Transcriptional Responses of Bradyrhizobium japonicum in the Soybean Rhizoplane

Elevated atmospheric CO2 can influence the structure and function of rhizoplane and rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizoplane and rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizoplane of soybean plants exposed to ele...

متن کامل

Fungi in the future: interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2 ) and ozone (O3 ) concentrations on AM fungal communities. Molecular methods were used to ch...

متن کامل

Response of the rhizosphere prokaryotic community of barley (Hordeum vulgare L.) to elevated atmospheric CO2 concentration in open‐top chambers

The effect of elevated atmospheric CO2 concentration [CO2 ] on the diversity and composition of the prokaryotic community inhabiting the rhizosphere of winter barley (Hordeum vulgare L.) was investigated in a field experiment, using open-top chambers. Rhizosphere samples were collected at anthesis (flowering stage) from six chambers with ambient [CO2 ] (approximately 400 ppm) and six chambers w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010